Considerations for Inhalation Safety Assessment: Approaches and Application

Madhuri Singal, PhD, RRT, DABT
Inhalation Toxicologist, Senior Consumer Safety Associate
Reckitt Benckiser, LLC
CIR Expert Panel Meeting, Washington, D.C.
September 11th, 2017

Objectives

- Inhalation exposure assessment paradigm
- Gases, vapors, and droplets/particles
- Particle specifications
- Air exposure versus deposition and bioavailability
 - 2-Box Air Dispersion Model
 - Multiple Path Particle Deposition Model
- Translating air concentration to systemic dose
 - Local effects versus systemic toxicity
- Data assessment and evaluation of exposure margin of safety

Exposure, Air Concentration and Context

Inhalation Safety
Assessment per EU
Scientific Committee on
Consumer Safety (SCCS)

Hazard Assessment
(systemic / local toxicity)

Hazard Identification

Hazard Characterization

Based on existing data or generation of empirical data

Understanding of formulation and device operation/output

Application of parameters for formulation and device using *in silico* prediction methods

Comparison to existing data or toxicological threshold of concern (in absence of data)

Available Data on each Ingredient (regulations: prohibition, max. conc., phys.-chem. data)

Defining Inhalation Assessment Parameters

- Airborne concentration (mg/m³)
- Air Exchange Rate (ACH)
 - N = (60*Q)/Vol
 - Where:
 - N = number of air changes per hour
 - Q = Volumetric flow rate of air
 - Vol = Space volume L × W × H
- Particle/Droplet size distribution (MMAD and GSD)
- Respiratory rate and tidal volume
 - Based on age, activity and health
- Duration of exposure
- Chemical, physical or biological properties of the hazardous

What's in the Air? - Distinct Characteristics

- Gases, vapors, and particles/droplets
 - Low vapor pressure compounds (droplet phase and solid particles)
 - Medium vapor pressure compounds (mixture of vapor and particle phases)
 - High vapor pressure compounds (vapor phase)
 - Nanosize droplets/particles are modeled by MPPD as the vapor component emulates nanosized droplets/particle behavior
 - Nanoscale is defined as a dimension between 1-100 nm (ISO, 2008)
 - Nanoparticle having a mean mass aerodynamic diameter of 1-100 nm
 - Nanomaterial an aerosol dispersion containing >50% droplets/particles characterized as nanoscale

Particle/Droplet Specifications

- Mean mass aerodynamic diameter and geometric standard deviation
 - Size dictates depth of deposition
 - Cells affected will determine impact of exposure
- Biochemical reactivity
 - Interaction with phospholipid bilayer of the cell membrane
 - Potential for paracellular transport and interaction with internal cellular processes
 - Activation of oxidant-mediated systems
- Structure and solubility
 - Mass per surface area
- Surface charges

Evaluation of deposition efficiency and impact of propellant

HFA = hydrofluoroalkane CFC = chlorofluorocarbon

Evaluation of deposition efficiency and impact of surface static charge

HEALTH * HYGIENE * HOME

Evaluation of cytotoxicity induced by exposure to solid particles of differing structure and/or charge status

Concentration of Particles

Quantification of inflammatory mediator response following exposure to solid particles of differing structure and/or charge status

Singal, M., Doctoral Dissertation, University of Rochester, 2005

HEALTH • HYGIENE • HOME

M. Singal CIR Expert Panel Meeting September 2017

Molecular/Ionic Form

Particulate Form

Boverhof, D. et al., Regulatory Toxicology and Pharmacology 73 (2015) 137-150

Boverhof, D. et al., Regulatory Toxicology and Pharmacology 73 (2015) 137-150

Air Exposure vs. Deposition and Bioavailability

- 2-Box Air Dispersion Model, ConsExpo, IKW, BAMA, MCCEM
 - All evaluate possible exposure under defined conservative consumer and/or occupational scenarios
 - Basic assumptions include:
 - Homogeneous distribution of emitted concentration
 - 100% potential for inhalation of airborne concentration
- Multiple Path Particle Deposition Model
 - Allows refinement of the exposure assessment by evaluation of regional deposition in the respiratory tract
 - Models include ages 3 months old to adult
 - Pulmonary condition can be modeled to emulate disease (asthma, COPD)
 - Tissue disposition can also be evaluated

2-Box Air Dispersion Model - Florafire Idla Anadas sysis

Regional Deposition

Nasopharyngeal region

Deposition: impaction, diffusion

Clearance: mucociliary, sneezing/blowing

Targeted by: >30 µm particles

highly reactive, water soluble gas,

"inhalable fraction"

Tracheobronchial region

Deposition: impaction, sedimentation, diffusion

Clearance: mucociliary, coughing

Targeted by: 10-30 µm particles, 200 µm fibres,

"thoracic fraction"

Pulmonary region (parenchyma)

Deposition: sedimentation, diffusion Clearance: phagocytosis, solubilisation,

interstitial

Targeted by: <10 µm particles, 10-12 µm fibres

less reactive/water soluble gas,

"respirable fraction"

W. Steiling et al., Toxicology Letters 227 (2014) 41–49

Predictive Power of Dosimetry Modeling

Image courtesy of Dr. Jeffry Schroeter, Applied Research Associates

HEALTH - HYGIENE - HOME

Acetaldehyde Model Predictions Match Published Experimental Data

HEALTH + HYGIENE + HOME

Human Nasal Deposition Patterns

Image courtesy of Dr. Jeffry Schroeter, Applied Research Associates

Percent of Vapor Uptake in the Lower Airway

Absorption in the Lower Airway

Acute Inhalation vs. Long-term Inhalation Toxicity

Translating Air Concentration to Systemic Dose

 The output from an exposure-only model is applied as the anticipated human systemic dose (mg/kg/day)

$$mg/kg/day = \frac{(mg/L/day)(A)(D)(MV)}{BW}$$

• A conservative, route non-specific approach for MOE calculation:

MOE =
$$\frac{(NOAEL)(DAF)(D_A)}{(Human exposure)(D_H) \left[\frac{(Human MV_{actual})}{(Human MV_{rest})} \right]}$$

- NOAEL No observed adverse effect level from an animal inhalation toxicology study in units of air concentration (mg/L/day, mg/m³/day, ppm/day)
- Human exposure measured or surrogate in the same concentration units as the animal NOAEL
- D_A Duration of animal exposure (minutes/day)
- D_H Duration of human exposure (minutes/day
- DAF Dosimetric adjustment factor for respiratory tract region (regional deposited dose ratio (RDDR) for aerosol droplets/particles or a regional gas dose ratio (RGDR) for gases and vapors)
- MV_{actual} Human minute ventilation (L/min) at actual level of activity
- MV_{rest} Human minute ventilation (L/min) at rest

Data Assessment and Evaluation

		Endpoints															
Solvent	Cramer Class	% Solvent	Droplet Size Distribution MMAD (µm)		Total Product Amount Release (g/s)	Typical Usage (Sprays per Day)	Length of Time per Spray (s)	Total Spray Time (s)	Cumulative Air Concentration of Solvent Present (mg/day)	Cumulative Inhalation Concentration per Day (mg/m³)** based on 9 L/min	Pass/Fail TTC (Class III <0.47 mg/m³ and Class 1 <1.4 mg/m³)	NOAEL	MOS	Pass/Fail MOS (>100)	Fraction total deposition (adult)	Adjusted Cumulative Inhalation Concentration per Day (mg/m³)** based on 9 L/min	Pass/Fail TTC (Class III <0.47 mg/m³ and Class 1 <1.4 mg/m³)
Ethanol	1	40	6	1	0.005	48	6	288	7.43	0.573302469	PASS	2000	16150.7	PASS			
Isopar	III	86	6	1	0.005	48	6	288	15.98	1.233024691	FAIL	86.4	324.406	PASS	0.9136	1.126491358	FAIL
DPnP	III	20	6	1	0.005	48	6	288	3.72	0.287037037	PASS	21	338.71	PASS			
Acetone	ı	40	6	1	0.005	48	6	288	7.43	0.573302469	PASS	171	1380.89	PASS			
Solvent	Cramer Class	% Solvent	Droplet Size Distribution MMAD (μm)	GSD (μm)	Total Product Amount Release (g/s)	Typical Usage (Sprays per Day)	Length of Time per Spray (s)	Total Spray Time (s)	Cumulative Air Concentration of Solvent Present (mg/day)	Cumulative Inhalation Concentration per Day (mg/m³)** based on 9 L/min		NOAEL	MOS	Pass/Fail MOS (>100)	Fraction total deposition (adult)	Adjusted Cumulative Inhalation Concentration per Day (mg/m³)** based on 9 L/min	Pass/Fail TTC (Class III <0.47 mg/m³ and Class 1 <1.4 mg/m³)
Ethanol	ı	40	64	3.17	0.15	10	1	10	7.74	0.597222222	PASS	2000	15503.9	PASS			
Isopar	III	86	64	3.17	0.15	10	1	10	16.65	1.284722222	FAIL	86.4	311.351	PASS	0.3269	0.419975694	PASS
DPnP	III	20	64	3.17	0.15	10	1	10	3.87	0.298611111	PASS	21	325.581	PASS			
Acetone	ı	40	64	3.17	0.15	10	1	10	7.74	0.597222222	PASS	171	1325.58	PASS			

Oronasal Regional Deposition Profile

6 μm Oral vs. Nasal Deposition Profile*

*in 3 Month Old Child

Region: Entire Lung Region: Entire Lung

HEALTH * HYGIENE * HOME

Acknowledgements

- 2-Box Air Dispersion Model
 - Applied Research Associates
 - Owen Price
- Respiratory In Silico Deposition Model (MPPD)
 - The Hamner Institutes for Health Sciences, Applied Research Associates, and University of North Carolina
 - Bahman Asgharian
 - Jeffry Schroeter
 - Julie Kimball
 - Owen Price

